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Abstract
The main aim of this paper is to develop a new algorithm for computing a nonnegative
low rank tensor approximation for nonnegative tensors that arise in many multidi-
mensional imaging applications. Nonnegativity is one of the important properties, as
each pixel value refers to a nonzero light intensity in image data acquisitions. Our
approach is different from classical nonnegative tensor factorization (NTF), which
requires each factorized matrix, and/or tensor, to be nonnegative. In this paper, we
determine a nonnegative low Tucker rank tensor to approximate a given nonnegative
tensor. We propose an alternating projections algorithm for computing such a nonneg-
ative low rank tensor approximation, which is referred to as NLRT. The convergence
of the proposed manifold projection method is established. The experimental results
for synthetic data and multidimensional images are presented to demonstrate that the
performance of NLRT is better than the state-of-the-art NTF methods.
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1 Introduction

Nonnegative data are very common in many data analysis applications. For instance,
in image analyses, image pixel values are nonnegative, and the associated images can
be seen as nonnegative matrices for clustering and recognition tasks. When the data
are already high dimensional by nature, for example, video data, hyperspectral data,
fMRI data and so on, it then seems more natural to represent the information in a high
dimensional space, rather than flatten the data into a matrix. The data represented in
high dimensions are referred to as tensors.

An m-dimensional tensor A is a multidimensional array, A ∈ R
n1×···×nm . To

extract pertinent information from given large tensor data, low rank tensor decom-
positions are usually considered. In recent decades, various tensor decompositions
have been developed according to different applications. The most famous and widely
used decompositions are the canonical polyadic decomposition (CPD) and Tucker
decomposition. For more details of tensor applications and tensor decompositions, we
refer to the review papers [13, 24]. In this paper, we only target tensors in Tucker form.
Hence, in the following, we briefly review the Tucker decomposition.

Given a tensorA ∈ R
n1×n2×···×nm , the Tucker decomposition [8, 13, 26] is defined

as follows:
A = G ×1 U(1) ×2 U(2) ×3 · · · ×m U(m), (1)

that is,
Ai1,··· ,im =

∑

j1,··· , jm
G j1,··· , jmU(1)

i1, j1
· · · U(m)

im , jm
, (2)

where G = (G j1, j2,··· , jm ) ∈ R
r1×r2×···×rm , U(k) is an nk-by-rk matrix (whose columns

are usually mutually orthogonal), and ×k denotes the k-mode matrix product of a
tensor defined by

(G ×k U(k)) j1··· jk−1ik jk+1··· jm =
rk∑

jk=1

G j1··· jk−1 jk jk+1··· jmU(k)
ik , jk

.

The minimal value of (r1, r2, . . . , rm) is defined as the Tucker (or multilinear) rank of
A, denoted as rankT (A) = (r1, r2, · · · , rm).

Since high-dimensional nonnegative data are everywhere in the real world, and the
nonnegativity of the factor matrices derived from tensor decompositions can lead to
interpretations for real applications, many nonnegative tensor decompositions have
been proposed and developed, and most of them are based on a tensor decomposition
with nonnegative constraints. A Tucker decomposition with nonnegative constraints,
which is referred to as a nonnegative Tucker decomposition (NTD) in [12], aims to
solve

min ‖A − X‖2F
s.t. X = S ×1 P1 ×2 P2 ×3 · · · ×m Pm,

S ∈ R
r1×···×rm+ , Pk ∈ R

nk×rk+ , k = 1, . . .m,

(3)
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Nonnegative low rank tensor approximations 143

where ‖ · ‖F denotes the Frobenius norm of a tensor (see the definition in Sect. 2),
and R

s1×···×sm+ is the set of nonnegative s1 × · · · × sm tensors (or matrices) whose
entries are nonnegative. In [12], Kim and Choi first studied this model and proposed
multiplicative updating (MU) algorithms extended from nonnegative matrix factor-
ization (NMF) to solve it. In [32], Zhou et al. transformed this problem into a series of
NMF problems and used the MU and hierarchical alternating least squares (HALS)
algorithms on the unfolding matrices for Tucker decomposition calculations. Other
constraints, such as the orthogonality of the factor matrices, are also considered and
studied by some researchers [19, 21]. For instance, in [21], Pan et al. proposed an
orthogonal nonnegative Tucker decomposition and applied the alternating direction
method of multipliers (ADMM) to obtain the clustering information from the factor
matrices and the joint connection weight from the core tensor.

The greatest advantage of the NTDmodel is that the core tensor and factor matrices
can be interpretable thanks to the requirement of the factorized components. How-
ever, the approximation X is not the best approximation of A for the given Tucker
rank (r1, . . . , rm). Hence, it is required to find the best low Tucker rank nonnegative
approximation for a given nonnegative tensorAwith interpretable factor matrices and
a core tensor. In this paper, we propose the following problem. Given a nonnegative
tensor A ∈ R

n1×···×nm+ , we consider

min
X≥0

‖A − X‖2F , s.t. rankT (X) = (r1, r2, . . . , rm). (4)

From rankT (X) = (r1, r2, . . . , rm), we can deduce that there exist a core tensor
S ∈ R

r1×r2×···×rm and orthogonal factormatrices {Pk : Pk ∈ R
nk×rk ,PT

k Pk = Irk , k =
1, . . . ,m}, such that

X = S ×1 P1 ×2 P2 ×3 · · · ×m Pm,

and the entries of X are nonnegative (X ≥ 0). For k = 1, . . . ,m, let Xk be the k-th
unfolding of the tensorX, defined as Xk ∈ R

nk×(nk+1···nmn1···nk−1). From the definition
of the Tucker decomposition, we deduce that rk = rank(Xk), and the factor matrix
Pk can be obtained by a singular value decomposition of Xk :

Xk = Pk�kQT
k ,

Here,�k is a diagonal matrix of size rk-by-rk , and Qk is
∏m

i �=k ni -by-rk with orthonor-

mal columns (QT
k is the transpose of Qk).

We remark that problem (4) without the nonnegativity constraint on the approxi-
mationX is referred to as the best lowmultilinear rank approximation problem, which
has been well discussed and used widely as a tool in dimensionality reduction and
signal subspace estimation during the last two decades. The classical methods for
the problem are the truncated higher-order SVD (HOSVD) [8] and the higher-order
orthogonal iteration (HOOI) [9, 14], which is a higher-order extension of an iteration
method formatrices.Without the nonnegative constraint, the solutionXmay have neg-
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144 T.-X. Jiang et al.

ative entries that cannot preserve the nonnegative property of the given nonnegative
tensor.

Note that in the proposed model (4), we require X to be nonnegative, while its
factorized components (S, {Pk}mk=1) are not necessarily nonnegative. For example,
given a hyperspectral image A, X can be seen as an approximate image of A, but
with a lower multilinear rank. On the one hand, we keep the approximate image X as
nonnegative. On the other hand, no constraints are added to the factorized components.
Therefore we can consider a similar idea utilized in HOSVD to identify important
features in the approximation, which are ranked based on their importance. Then we
can identify the important factorized components for classification purposes; see Sect.
4.5 for an example.

1.1 Outline and contributions

The main aim of this paper is to propose and study low multiliear rank nonnegative
tensor approximations formultidimensional image applications. In Sect. 2, we propose
an alternating manifold projection method for computing the nonnegative low multi-
linear rank tensor approximation. The projection method is developed by constructing
two projections; one is a combination of a projection of low rank matrix manifolds
and the nonnegative projection; the other one is a projection of taking the average of
the tensors. In Sect. 3, the convergence of the proposed method is studied and shown.
Section 4 presents the experimental results for synthetic data and multidimensional
images in noisy and noise-free cases. It demonstrates that the performance of the pro-
posed nonnegative low multilinear rank tensor approximation method is better than
the state-of-the-art NTF methods. Some concluding remarks are given in Sect. 5.

2 Nonnegative low rank tensor approximation

Let us first start with some tensor operations used throughout this paper. The inner
product of two same-sized tensors A and B is defined as

〈A,B〉 :=
∑

i1,i2,··· ,im
Ai1i2···im Bi1i2···im .

The Frobenius norm of an m-dimensional tensor A is defined as

‖A‖F := √〈A,A〉 =
⎛

⎝
∑

i1,i2,··· ,im
A2

i1i2···im

⎞

⎠

1
2

.

2.1 The optimizationmodel

We first give the following lemma to demonstrate that the set of constraints in (4) is
nonempty.
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Nonnegative low rank tensor approximations 145

Lemma 1 The set of constraints {X ∈ R
n1×n2×···×nm | rank(Xk) = rk (k =

1...,m),X ≥ 0} in (4) is nonempty.
Proof First, we will prove that there always exists a tensor S ∈ R

r1×···×rm+ that has full
unfolding matrix rank for each mode.

For any t ∈ R
r1r2···rm+ , let (Sk)(t) ∈ R

rk×r1···rk−1rk+1···rm hold the elements of t . Let
(Sk)(t)rk be the rk × rk sub matrix of (Sk)(t) and det((Sk)(t)rk ) be its determinant.
As we know that det((Sk)(t)rk ) is a polynomial in the entries of t , it either vanishes
on a set of zero measures or it is a zero polynomial. We may choose (Sk)(t)rk to be
the identity matrix, which implies that det((Sk)(t)rk ) are not zero polynomials. This
means the Lebesgue measure of the space whose det((Sk)(t)rk ) = 0 is zero, i.e., the
rank of (Sk)(t)rk is rk almost everywhere.

Thus, for k = 1, . . . ,m, construct Tk = {S ∈ R
r1×···×rm+ |rank(Sk) = rk}, and let

T̄k be its complement. From the above analysis, we know that the Lebesgue measure
of T̄k is equal to zero. Let T = ∩m

k=1Tk ; then, its complement T̄ = ∪m
k=1T̄k , and its

Lebesgue measure is the summation of that of T̄k from k = 1 to k = m, equal to zero.
This implies that the Lebesque measure of T equals 1, i.e., S ∈ R

r1×···×rm+ of unfolding
matrix rank (r1, . . . , rm) exists almost everywhere.

Suppose Pk ∈ R
nk×rk , and Pk = [Ik |Uk], where Ik is the identity matrix of rk and

Uk ∈ R
rk×(nk−rk ) is a random nonnegative matrix for all k = 1, . . . ,m. Construct

X = S × P1 × · · · × Pm,

we obtain that X is nonnegative and its multilinear rank is (r1, · · · , rm). Hence the set
of constraints is nonempty. 
�

From the definition of Tucker decomposition and the property of multilinear rank
that rk = rank(Xk) for k = 1, · · · ,m, the mathematical model in (4) can be refor-
mulated as the following optimization problem:

min
rank(Xk )=rk ,Xk≥0

(k=1,...,m)

m∑

k=1

‖Ak − Xk‖2F , (5)

where Xk and Ak are the k-th modes of the unfolding matrix of X andA, respectively.
The sizes of Ak and Xk are nk-by-Nk with Nk = ∏m

i �=k ni .
Note that from (5), {Xk}mk=1 can be seen asmmanifolds of low rank and nonnegative

matrices. Meanwhile, as the Frobenius norm is employed in the objective function,
to a certain extent, our model is tolerant to noise, which is unavoidable in real-world
data. In the next section, an alternating projections on the manifolds algorithm will be
proposed to solve model in (5).

2.2 The proposed algorithm

To start showing the proposed algorithm for (5), we first define two projections. Let

M = {X ∈ R
n1×···×nm | Xi1i2···im ≥ 0} (6)
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146 T.-X. Jiang et al.

be the set of nonnegative tensors. Then the nonnegative projection that projects a given
tensor onto the tensor manifold M can be expressed as follows:

π(X) =
{
Xi1i2···im , if Xi1i2···im ≥ 0,

0, if Xi1i2···im < 0.
(7)

Let
Mk = {X ∈ R

n1×···×nm | rank(Xk) = rk }, k = 1, ...,m, (8)

be the set of tensors whose k-mode unfolding matrices have fixed rank rk . By the
Eckart-Young-Mirsky theorem [11], the k-mode projections that project tensorX onto
Mk are presented as follows:

πk(X) = foldk

( ri∑

i=1

σi (Xk)ui (Xk)vi (Xk)
T

)
, k = 1, ...,m, (9)

where Xk is the k-mode unfolding matrix of X, σi (Xk) is the i-th singular value of
Xk , and their corresponding left and right singular vectors are ui (Xk) and vi (Xk),
respectively. “foldk” denotes the operator that folds a matrix into a tensor along the
k-mode.

In model (5), the multilinear rank of the nonnegative approximation X is required
to be (r1, . . . , rm), which means X will fall in the intersection of the sets {Mk}mk=1 and
the nonnegative tensor set M, i.e.,X ∈ ⋂m

k=1(Mk
⋂

M). In the following, we define two
tensor sets on the product spaceRn1×···×nm ×· · ·×R

n1×···×nm (m times ofRn1×···×nm )
and their corresponding projections:
•

Ω1 = {(X1,X2, · · · ,Xm) : X1 = X2 = · · · = Xm ∈ M}. (10)

We remark that Ω1 is a convex and affine manifold since M is a convex set and an affine
manifold. The projection πΩ1

defined on Ω1 is given by

πΩ1
(X1, · · · ,Xm)

=
(
1

m
(π(X1) + · · · + π(Xm)) , · · · ,

1

m
(π(X1) + · · · + π(Xm))

)
, (11)

where π is defined in (7).
•

Ω2 = {(X1,X2, . . . ,Xm) : X1 ∈ M1,X2 ∈ M2, . . . ,Xm ∈ Mm}. (12)

For each i ∈ {1, ...,m}, Mi is a C∞ manifold (Example 2 in [17]). Hence, Ω2 can be
regarded as a product ofm C∞ manifolds, i.e., Ω2 = M1 ×M2 · · ·×Mm . The projection
πΩ2

on Ω2 is given by
πΩ2

(X) = (π1(X), . . . , πm(X)), (13)

where πk (k = 1, ...,m) are defined in (9).
We alternately project the given A onto Ω1 and Ω2 by the projections πΩ1

(X) and
πΩ2

(X) until it is convergent, and refer the algorithm to as the alternating projections
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Nonnegative low rank tensor approximations 147

algorithm for the nonnegative low rank tensor (NLRT) approximation problem. The
proposed algorithm is summarized in Algorithm 1. Note that the dominant overall
computational cost of Algorithm 1 can be expressed as the SVDs of m unfolding
matrices with sizes nk by Nk = ∏n

i �=k n j , respectively, which leads to a total of
O((

∏m
j=1 n j )

∑m
i=1 ri ) flops.

Algorithm 1 Alternating Projections Algorithm for Nonnegative Low Rank Tensor
(NLRT) Approximation
Input: Given a nonnegative tensorA ∈ R

n1×···×nm , this algorithm computes a Tucker rank (r1, r2, ..., rm )

nonnegative tensor close to A with respect to (5).

1: Initialize s = 0, Z(0)
1 = ... = Z (0)

m = A and Z (0) = (Z(0)
1 ,Z(0)

2 , ...,Z(0)
m )

2: while the convergence criterion is not satisfied
3: s = s + 1
4: (Y(s)

1 ,Y(s)
2 , ...,Y(s)

m ) = π¨2 (Z(s−1)
1 ,Z(s−1)

2 , · · · ,Z(s−1)
m );

5: (Z(s)
1 ,Z(s)

2 , · · · ,Z(s)
m ) = π¨1 (Y(s)

1 ,Y(s)
2 , ...,Y(s)

m );
6: end while

Output: Z (s) = (Z(s)
1 ,Z(s)

2 , · · · ,Z(s)
m )

Remark: The convergence criterion can be used by setting the maximum number of iterations; or/and the
relative difference between successive iterates ‖Z (s) − Z (s−1)‖F/‖Z (s−1)‖F being less than a positive
number ε. In our numerical results, we set the convergence criterion based on the relative difference with
ε = 10−5.

3 Convergence analysis

The framework of this algorithm is the same as the convex problem of finding a point
in the intersection of several closed sets, and the projection sets here are two product
manifolds. In [17], Lewis and Malick proved that a sequence of alternating projec-
tions converges locally linearly if the two projected sets areC2-manifolds intersecting
transversally. Lewis et al. [15] proved local linear convergence when two projected
sets intersect nontangentially in the sense of linear regularity, and one of the sets is
super regular. Later, Bauschke et al. [3, 4] further investigated the case of nontangential
intersections and proved linear convergence under weaker regularity and the transver-
sality hypotheses. In [20], Noll and Rondepierre generalized the existing results by
studying the intersection condition of the two projected sets. They established local
convergence of alternating projections between subanalytic sets under a mild regular-
ity hypothesis on one of the sets. Here, we analyze the convergence of the alternating
projections algorithm by using the results in [20].

We remark that the sets Ω1 and Ω2 given in (10) and (12), respectively, are two C∞
smooth manifolds that are not closed. The convergence cannot be derived directly by
applying the convergence results of the alternating projections between two closed
subanalytic sets. By using results in variational analysis and differential geometry, the
main convergence results are shown in the following theorem.

Theorem 1 Let Mi , i = 1, ..,m, and M be the manifolds given in (8) and (6), respec-
tively. Let M ∈ M1 ∩ · · · ∩ Mm ∩ M �= ∅. Then there exists a neighborhood U of M
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148 T.-X. Jiang et al.

such that whenever a sequence {Z (k)} derived by Algorithm 1 falls in U1, and it con-
verges to some Z∗ ∈ M1 ∩ · · · ∩ Mm ∩ M with rate ‖Z (k) − Z∗‖F = O(k−δ) for some
δ ∈ (0,+∞).

To show Theorem 1, it is necessary to study Hölder regularity and separable inter-
section. For a detailed discussion, we refer to Noll and Rondepierre [20].

Definition 1 [20] Let A and B be two sets of points in a Hilbert space equipped with
the inner product 〈·, ·〉 and the norm ‖·‖. Denote pA(x) = {a ∈ A : ‖x−a‖ = dA(x)},
where dA(x) = min{‖x −a‖ : a ∈ A}. Similarly, denote pB(x) = {b ∈ B : ‖x −b‖ =
dB(x)}, where dB(x) = min{‖x − b‖ : b ∈ B}. Let σ ∈ [0, 1). The set B is σ -Hölder
regular with respect to A at x∗ ∈ A ∩ B if there exists a neighborhood U of x∗ and a
constant c > 0 such that for every ȳ ∈ A ∩ U and every x̄ ∈ pB(ȳ) ∩ U, one has

Ball(ȳ, (1 + c)r) ∩ {x | ȳ ∈ pA(x), 〈ȳ − x̄, x − x̄〉 >
√
crσ+1‖x − x̄‖} ∩ B = ∅,

where r = ‖ȳ − x̄‖. Note that pB(ȳ) is the projection of ȳ onto B and pA(x) is the
projection of x onto A, with respect to the norm. We say that B is Hölder regular with
respect to A if it is σ -Hölder regular with respect to A for every σ ∈ [0, 1).

Hölder regularity is mild compared with some other regularity concepts such as
prox-regularity [22], Clarke regularity [7] and superregularity [16].

Definition 2 [20] Let A and B be two sets of points in a Hilbert space equipped with
the inner product 〈·, ·〉 and the norm ‖·‖. We say B intersects separably A at x∗ ∈ A∩B
with exponent ω ∈ [0, 2) if there exists a neighborhood U of x∗ such that for every
building block z → ȳ → z̄ in U, the condition

〈z − ȳ, z̄ − ȳ〉 ≤ (1 − γ ‖z̄ − ȳ‖ω)‖z − ȳ‖‖z̄ − ȳ‖ (14)

holds with a positive number γ , i.e., it is equivalent to

1 − cosα

‖ȳ − z̄‖ω
≥ γ,

where ȳ is a projection point of z onto A, z̄ is a projection point of ȳ onto B, and α is
the angle between z − ȳ and z̄ − ȳ.

This separable intersection definition is a new geometric concept that generalizes
the transversal intersection [17], the linear regular intersection [15], and the intrinsic
transversality intersection [10]. It shows that the definitions of these three kinds of
intersections imply ω = 0 in the separable intersection.

The following results are needed to prove our main results.

Theorem 2 (Theorem 1 and Corollary 4 in [20]) Suppose B intersects A separately
at x∗ ∈ A ∩ B with exponent ω ∈ (0, 2), and B is ω/2-Hölder regular at x∗ with

1 {Z (k)} falls in U means there exists a positive integer k0 such that {Z (k)}k≥k0 ⊂ U.
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Nonnegative low rank tensor approximations 149

respect to A. Then there exists a neighborhood U of x∗ such that every sequence of
alternating projections between A and B falls in U, converges to a point x∗ ∈ A ∩ B

with a convergence rate of bk − x∗ = O(k− 2−ω
2ω ) and ak − x∗ = O(k− 2−ω

2ω ).

Proof of Theorem 1 Let Ω1 and Ω2 be given as (10) and (12), respectively. It is clear
that finding a point in M1 ∩ · · · ∩ Mm ∩ M is equivalent to finding a point X∗ in the
intersection of Ω1 and Ω2. We can set Ω1 and Ω2 to be B and A, respectively, in Theorem
2.

The first task is to show that Ω1 is Hölder regular with respect to Ω2 at X∗. Note
that Ω1 is a convex set, and πΩ1

(Y ) is single-valued for every Y ∈ R
n1×···×nm × · · · ×

R
n1×···×nm . Therefore, Ω1 is prox-regular. It implies that Ω1 isω/2-Hölder regular with

respect to Ω2 at X∗ where ω ∈ (0, 2).
The next task is to show that Ω1 intersects separably Ω2 at X∗ ∈ Ω1 ∩ Ω2 with

exponent ω ∈ (0, 2). Define f : Ω2 → R as

f (X) = δΩ2
(X) + 1

2
d2Ω1

(X), X = (X1, X2, ..., Xm) ∈ Ω2, (15)

with

δΩ2
(X) =

{
0 if X ∈ Ω2,

+∞ otherwise,

and

dΩ1
(X) = min{‖(X − W‖F : W ∈ Ω1}.

It follows from the definition of f (X) that f (X∗) = 0 and X∗ is a critical point of f .
Recall thatΩ1 andΩ2 are twoC∞ manifolds. Then, f is locallyLipschitz continuous,

i.e., for each X ∈ Ω2, there is an r > 0 such that f is Lipschitz continuous on the open
ball of center X with radius r . Assume that (V, ψ) is a local smooth chart of Ω2 around
X∗ with bounded V. Therefore, f (V) is bounded by the fact that f is local Lipschitz
continuous. According to the definition of the semialgebraic function [18], we can
deduce that f ◦ψ−1 is also semialgebraic. Then, the Kurdyka-Łojasiweicz inequality
[1] for f ◦ ψ−1 holds for W̄ := ψ(X∗). This implies that there exist η ∈ (0,∞) and
a concave function τ : [0, η] such that

(i) τ(0) = 0;
(ii) τ is C1;
(iii) τ ′ > 0 on (0, η);
(iv) for all W ∈ ψ(V) = U with f ◦ ψ−1(W̄ ) < f ◦ ψ−1(W ) < f ◦ ψ(W̄ )) + η, we

have

τ ′( f ◦ ψ−1(W ) − f ◦ ψ−1(W̄ )) dist(0, ∂( f ◦ ψ−1)(W ) ≥ 1.

Moreover, τ is analytic onV; thus, D(ψ) is continuous onV, where D is the differential
operator. For every compact subset K in V, there exists CK := supW∈K ‖D(ψ(W ))‖,
where ‖·‖ denotes the operator norm. Suppose thatV

′
is an open set containing X∗ inV

such that K = cl(V
′
) ⊂ int(V) is compact (cl(V

′
) denotes the closure of V

′
and int(V)
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150 T.-X. Jiang et al.

denotes the interior ofV). Then, for every X ∈ V
′
with f (X∗) < f (X) < f (X∗)+η,

we have
CKτ

′( f (X) − f (X∗)) dist(0, ∂̂( f (X)) ≥ 1, (16)

where ∂̂ f (X) is the Fréchet subdifferential of f . We see that the Kurdyka-Łojasiweicz
inequality is satisfied for f given in (15).

Here, we construct a function τ = t1−θ (0 < θ < 1) that satisfies (i)-(iv). Because
f (X∗) = 0, (16) becomes

CKτ
′( f (X)) dist(0, ∂̂( f (X)) ≥ 1.

Since τ ′(t) = (1− θ)t−θ , there always exists a neighborhood U of X∗ ∈ Ω1 ∩ Ω2 such
that CK(1 − θ)| f (X)|−θ‖g‖F ≥ 1, i.e.,

| f (X)|−θ‖g‖F ≥ c, with c = 1

CK(1 − θ)
, (17)

for all X ∈ Ω2 ∩ U and every g ∈ ∂̂ f (X).
By usingAlgorithm1,we construct the following sequences according toDefinition

2:

Z → Ȳ → Z̄ → · · · .

Here, Ȳ is the projectionπΩ2
(Z) and Z̄ is the projectionπΩ1

(Ȳ ), withπΩ1
(·) andπΩ2

(·)
being defined as (11) and (13), respectively. Suppose Z and Z̄ are in U, Ȳ ∈ U ∩ Ω2;
we obtain the proximal normal cone to Ω2 at Ȳ :

Np
Ω2

(Ȳ ) = {λV : λ ≥ 0, Ȳ ∈ πΩ2
(Ȳ + V )}.

According to the definition of the Fréchet subdifferential, G ∈ ∂̂ f (Ȳ ) if and only if
G = V + Ȳ − Z̄ for every V ∈ Np

Ω2
(Ȳ ) of the form V = λ(Z − Ȳ ).

Note that Ȳ ∈ πΩ2
(Z), from (15), we have f (Ȳ ) = 1

2d
2
Ω1

(Ȳ ). Substitute f (Ȳ ) into
(17) to obtain

2θdΩ1
(Ȳ )−2θ‖λ(Z − Ȳ ) + (Ȳ − Z̄)‖F ≥ c > 0,

for every λ ≥ 0. It follows that

dΩ1
(Ȳ )−2θ min

λ≥0
‖λ(Z − Ȳ ) + (Ȳ − Z̄)‖F ≥ 2−θc. (18)

Let α be the angle between the iterates, which can be defined as the angle between
Z − Ȳ and Z̄ − Ȳ . Let us consider two cases:

(i) When 0 < α ≤ π/2, we have

min
λ≥0

‖λ(Z − Ȳ ) + (Ȳ − Z̄)‖F = ‖Ȳ − Z̄‖F sin α.
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By substituting it into (18), we obtain

sin α

dΩ1
(Ȳ )2θ−1

≥ 2−θc.

Note that 1 − cosα ≥ 1
2 sin

2 α. We have

1 − cosα

dΩ1
(Ȳ )4θ−2

≥ 2−2θ−1c2. (19)

When the numerator tends to 0, the denominator has to go to zero, which implies that
4θ − 2 > 0, i.e., θ > 1

2 .
(ii) When π/2 < α < π , we have cosα < 0, i.e., 1 − cosα ≥ 1. The infimum in

(18) is attained at λ = 0, and (18) becomes dΩ1
(Ȳ )1−2θ ≥ 2−θc. Therefore,

1

dΩ1
(Ȳ )4θ−2

≥ 2−2θc2 > 2−2θ−1c2.

Since 1 − cosα ≥ 1, we have
1 − cosα

dΩ1
(Ȳ )4θ−2

≥ 2−2θ−1c2, i.e., (19) is satisfied with

θ > 1
2 .

Therefore, Ω1 intersects Ω2 separably with the exponent ω = 4θ − 2 ∈ (0, 2), the
corresponding number γ in Definition 2 can be set to be 2−2θ−1c2. By Theorem 2,
the result follows by setting δ = (2 − ω)/2ω ∈ (0,+∞). 
�

In the next section, we test our method and nonnegative tensor decomposition
methods on synthetic data and real-world data. The results show that the performance
of the proposed alternating projections method is better than the others.

4 Experimental results

4.1 Methods compared

We compare the following state-of-the-art Nonnegative Tucker decomposition (NTD)
methods for the nonnegative tensor decomposition:

NTD-HALS: An HALS algorithm [32]
NTD-MU: A multiple updating algorithm [32]
NTD-BCD: A block coordinate descent method [30]
NTD-APG: An accelerated proximal gradient algorithm [32]
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We also compare the proposed model with a well-known nonnegative CANDE-
COMP/PARAFAC decomposition (NCPD), that is, given a tensorA ∈ R

n1×n2×···×nm+ ,

min ‖A −
Z∑

z=1

λzaz,1 ⊗ az,2 ⊗ · · · az,m‖2F ,

s.t. λ = (
λ1 · · · λZ

) ≥ 0, At = (
a1,t · · · aZ ,t

) ≥ 0 (t = 1, . . . ,m).

(20)

The state-of-the-art methods for the NCPD model are presented as follows.

NCPD-HALS: A hierarchical ALS algorithm [5, 6]
NCPD-MU: A fixed point (FP) algorithm with multiplicative updating [28]
NCPD-BCD: A block coordinate descent (BCD) method [30]
NCPD-APG: An accelerated proximal gradient method [31]
NCPD-CDTF: A block coordinate descent method [23]
NCPD-SaCD: A saturating coordinate descent method with the Lipschitz
continuity-based element importance updating rule [2]

We list the computational cost of thesemethods in Table 1. The cost of the proposed
NLRTmethodper iteration is approximately the sameas that of theNTD-typemethods.
As they involve the calculation of nonnegative vectors only, the cost of the NCP-type
methods per iteration is smaller than that of the proposed NLRT method.

The stopping criterion of the proposed method and the other comparison methods
is that the relative difference between successive iterates is smaller than 10−5. All the
experiments are conducted on an Intel(R) Core(TM) i9-9900K CPU@3.60 GHz with
32 GB of RAM using MATLAB. Throughout this section, we mainly test the low-
rank approximation ability of our method and the nonnegative tensor decomposition
methods with a given rank. That is, the CP rank and the multilinear rank are manu-
ally prescribed. For real-world applications, we suggest two adaptive rank adjusting
strategies proposed in [29]. The basic idea is to use a large (or a small) value of the
rank as the initial guess and adaptively decrease (or increase) the rank based on the QR
decomposition of the unfolding matrices as the algorithm iterates. The effectiveness
of those strategies has been demonstrated in [29].

4.2 Synthetic data sets

We first test different methods on synthetic data sets. We generate two kinds of
synthetic data as follows:

– Case 1 (Noisy nonnegative low-rank tensor): We generate low rank nonnegative
tensors in two steps. First, a core tensor of size r1×r2×. . .×rm (i.e., themultilinear
rank is (r1, r2, · · · , rm)) and m factor matrices of sizes ni × ri (i = 1, 2, · · · ,m)
are generated with the entries uniformly distributed in [0, 1]. Second, these factor
matrices are multiplied by the core tensor via the tensor-matrix product to generate
the low rank nonnegative tensors of size n1 × n2 × · · · × nm , and each entry is
elementwisely divided by themaximal value, being in the interval of [0, 1]. Finally,
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Table 1 The computational cost

Method Complexity Details of the most expensive computations

NCPD-MU O(mr
∏m

j=1 n j ) Khatri-Rao product and unfolding matrices
times Khatri-Rao product

NCPD-HALS O(mr
∏m

j=1 n j ) Khatri-Rao product and unfolding matrices
times Khatri-Rao product

NCPD-BCD O(mr
∏m

j=1 n j ) Khatri-Rao product and unfolding matrices
times Khatri-Rao product.

NCPD-APG O(mr
∏m

j=1 n j ) Khatri-Rao product and unfolding matrices
times Khatri-Rao product

NCPD-CDTF O(m2r
∏m

j=1 n j ) Khatri-Rao product of rank one components
and vectors times Khatri-Rao product.

NCPD-SaCD O(mr
∏m

j=1 n j ) Khatri-Rao product and unfolding matrices
times Khatri-Rao product

NTD-MU O(
∑m

i=1
∏m

j �=i n j r
2
i ) MU on unfolding matrices {Ai }mk=1.

NTD-HALS O(
∑m

i=1
∏m

j �=i n j ri ) HALS on unfolding matrices {Ai }mk=1

NTD-BCD O(
∑m

i=1
∏m

j �=i n j ri (ri + ni )) The tensor-matrix multiplication and the
matrix multiplication between the i-th
unfolding matrix of G × j=1, j �=i U( j) and
its transpose

NTD-APG O(
∑m

i=1
∏m

j �=i n j r
2
i ) The tensor-matrix multiplications among a)

the i-th factor matrix b) the transpose of
the i-th unfolding matrix of
G× j=1, j �=iU( j) and c) the i-th unfolding
matrix of G× j=1, j �=iU( j)

NLRT O((
∏m

j=1 n j )
∑m

i=1 ri ) SVDs of unfolding matrices {Ai }mk=1

we addGaussian noise to generate noisy tensorswith different signal-to-noise ratio
(SNR)2.

– Case 2 (Nonnegative random tensor): We randomly generate nonnegative tensors
of size n1×n2×· · ·×nm , where their entries follow a uniform distribution between
0 and 1. The tensor data are fixed once generated, and the low rank minimizer is
unknown in this setting. For CP decomposition methods, the CP rank is set to r .
For Tucker decomposition methods, the multilinear rank is set to be [r , r , . . ., r ].
It is not straightforward to make the comparison between the NCPD methods with

lowmultilinear rank-basedmethods fair, owing to different definitions of the rank. For
NCPDmethods, determining theCP rankof a given tensor isNP-hard [13]. Fortunately,
we have that given the multilinear rank (r1, r2, . . ., rm) of a tensor, its CP rank cannot
be larger than

∏m
k=1 rk . Therefore, in Case 1, we select the CP rank in the NCPD

methods from a set with three candidates, i.e., {∏m
k=1 rk,

∑m
k=1 rk,maxi ri }. Then, we

report the best relative approximation error in the NCPD methods. We believe this
makes the comparison with the NCPD methods possible and fair to a certain extent in

2 To avoid making the entries negative, we first simulate noise with a standard normal distribution and then

set the negative noisy value to 0. The SNR in dB is defined as SNRdB = 20 log10
‖Xgroundtruth‖F

‖Noise‖F .
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Case 1. In Case 2, we set the CP rank as r for the NCPDmethods when the multilinear
rank is [r , r , . . . , r ]. In this situation, the results by the NCPD methods only reflect
the representation ability of these NCPD methods.

We report the relative approximation error3 to quantitatively measure the approx-
imation quality. The ground truth tensor is the generated tensor without noise. The
relative approximation errors of the results by different methods in Case 1 are reported
in Table 2. The reported entries of all the comparison methods in the table are the aver-
age values together with the standard deviations of ten trials with different random
initial guesses in the CP decomposition vectors and the Tucker decomposition matri-
ces. However, the results of the proposed NLRT method are deterministic when the
input nonnegative tensor is fixed. We can see from Table 2 that the proposed NLRT
method achieves the best performance and is also quite robust to different noise levels.

In Table 3, we report the average running time of each method. For tensors with
the same size, the NCPDmethods and NTDmethods need the same computation time
for different noise levels. The running time of our NLRT becomes less when the SNR
value is larger. This indicates that our method could converge faster with less noise.
Meanwhile, we can see that as the number of total elements in the tensor grows from
106 (100 × 100 × 100) to 2.3 × 107 (30 × 30 × 30 × 30 × 30), the running time
of all the methods increases rapidly. Since our method involves SVD computations,
whose computational complexity grows cubically with the dimension, our superior
efficiency is obvious for smaller data.

The relative approximation errors in Case 2 with respect to different values of r are
plotted in Fig. 1. As we stated, the tensor of a given size will be fixed once generated.
Then, for different values of r , we run each algorithm 10 times, and the averaged values
are plotted. From Fig. 1, we can see that the proposed NLRT method and NTD-BCD
perform better than the other methods. For tensors of size 40×40×40, the superiority
of our method over NTD-BCD is obvious when the rank is between 27 and 39.

4.3 Video data

In this subsection, we select 5 videos4 to test our method on the task of approximation.
Three videos (named “foreman”, “coastguard” and “news”) are of size 144×176×100
(height×width×frame), and one (named “basketball”) is of size 44 × 256 × 40. One
long video (named “bridge-far”) of size 144 × 176 × 2000 is also selected to test
the approximation ability for large-scale data. First, we set the multilinear rank to
be (r , r , · · · , r) and the CP rank to be r . We test our method to approximate these
five videos with varying r from 5 to 100. Moreover, we add Gaussian noise to the
video “coastguard” with different noise levels (SNRdB = 20, 30, 40, 50) and test the
approximation ability of different methods for noisy video data.

We plot the relative approximation errors with respect to r on 5 videos in Figs.
2 and 3. Although, for some videos the approximation errors of the results by the
NCPD methods are much higher than those for others, because setting CP rank to r

3 Defined as
‖Xestimated−Xgroundtruth‖F

‖Xgroundtruth‖F .

4 Videos are available at http://trace.eas.asu.edu/yuv/ and https://sites.google.com/site/jamiezeminzhang/
publications.

123

http://trace.eas.asu.edu/yuv/
https://sites.google.com/site/jamiezeminzhang/publications
https://sites.google.com/site/jamiezeminzhang/publications


Nonnegative low rank tensor approximations 155

Ta
bl
e
2

T
he

m
ea
n
va
lu
es

(a
nd

st
an
da
rd

de
vi
at
io
ns
)
of

th
e
re
la
tiv

e
ap
pr
ox

im
at
io
n
er
ro
rs
of

th
e
re
su
lts

by
di
ff
er
en
tm

et
ho

ds
in

C
as
e
1.
T
he

be
st
va
lu
es

ar
e
hi
gh

lig
ht
ed

in
bo

ld
.

(T
he

m
ea
n
va
lu
es

an
d
st
an
da
rd

de
vi
at
io
ns

ar
e
sh
ow

n
in

pe
rc
en
ta
ge
s)

Te
ns
or

si
ze
:1

00
×

10
0

×
10
0

M
ul
til
in
ea
r
ra
nk
:[5

,
5,
5]

SN
R
(d
B
)

N
oi
sy

N
C
PD

-M
U

H
A
L
S

A
PG

B
C
D

C
D
T
F

Sa
C
D

N
T
D
-M

U
H
A
L
S

A
PG

B
C
D

N
L
R
T

30
3.
16

2.
86

2.
78

2.
74

2.
74

2.
75

2.
95

2.
84

2.
75

2.
73

2.
75

2.
73

(0
.0
1)

(0
.0
1)

(0
.0
0)

(0
.0
0)

(0
.0
0)

(0
.1
1)

(0
.0
5)

(0
.0
3)

(0
.0
0)

(0
.0
1)

40
1.
00

1.
21

1.
01

0.
87

0.
87

0.
87

1.
31

1.
11

1.
00

0.
88

0.
95

0.
86

(0
.0
2)

(0
.0
1)

(0
.0
0)

(0
.0
0)

(0
.0
0)

(0
.1
4)

(0
.1
5)

(0
.1
2)

(0
.0
1)

(0
.0
5)

50
0.
32

0.
91

0.
59

0.
28

0.
28

0.
28

0.
97

0.
67

0.
50

0.
33

0.
51

0.
27

(0
.0
2)

(0
.0
3)

(0
.0
0)

(0
.0
0)

(0
.0
0)

(0
.2
1)

(0
.1
9)

(0
.1
6)

(0
.0
1)

(0
.0
7)

30
3.
16

2.
94

2.
77

2.
74

2.
75

2.
75

2.
99

2.
68

2.
67

2.
67

2.
67

2.
66

(0
.0
1)

(0
.0
0)

(0
.0
0)

(0
.0
1)

(0
.0
1)

(0
.1
6)

(0
.0
1)

(0
.0
0)

(0
.0
0)

(0
.0
0)

40
1.
00

1.
40

0.
96

0.
87

0.
88

0.
88

1.
41

0.
91

0.
88

0.
86

0.
85

0.
84

(0
.0
3)

(0
.0
2)

(0
.0
0)

(0
.0
2)

(0
.0
1)

(0
.1
3)

(0
.0
4)

(0
.0
2)

(0
.0
1)

(0
.0
1)

50
0.
32

1.
14

0.
52

0.
29

0.
34

0.
32

1.
22

0.
41

0.
35

0.
31

0.
31

0.
27

(0
.0
3)

(0
.0
3)

(0
.0
1)

(0
.0
9)

(0
.0
4)

(0
.2
9)

(0
.0
5)

(0
.0
3)

(0
.0
2)

(0
.0
3)

Te
ns
or

si
ze
:3

0
×

30
×

30
×

30
×

30
M
ul
til
in
ea
r
ra
nk
:[2

,
2,

2,
2,

2]
SN

R
(d
B
)

N
oi
sy

N
C
PD

-M
U

H
A
L
S

A
PG

B
C
D

C
D
T
F

Sa
C
D

N
T
D
-M

U
H
A
L
S

A
PG

B
C
D

N
L
R
T

30
3.
16

2.
98

2.
77

2.
74

2.
76

2.
77

3.
08

2.
48

2.
48

2.
47

2.
48

2.
48

(0
.0
7)

(0
.0
1)

(0
.0
0)

(0
.0
1)

(0
.0
1)

(0
.1
7)

(0
.0
0)

(0
.0
1)

(0
.0
0)

(0
.0
0)

40
1.
00

1.
11

0.
89

0.
87

0.
90

0.
89

1.
63

0.
83

0.
81

0.
81

0.
81

0.
80

(0
.0
6)

(0
.0
2)

(0
.0
0)

(0
.0
3)

(0
.0
2)

(0
.3
3)

(0
.0
7)

(0
.0
1)

(0
.0
1)

(0
.0
1)

50
0.
32

0.
75

0.
38

0.
28

0.
35

0.
39

1.
19

0.
28

0.
28

0.
27

0.
28

0.
25

(0
.0
9)

(0
.0
3)

(0
.0
1)

(0
.0
5)

(0
.0
9)

(0
.3
8)

(0
.0
2)

(0
.0
1)

(0
.0
1)

(0
.0
3)

123



156 T.-X. Jiang et al.

Ta
bl
e
3

T
he

av
er
ag
ed

ru
nn

in
g
tim

e
(i
n
se
co
nd

s)
of

di
ff
er
en
tm

et
ho

ds
in

C
as
e
1

Te
ns
or

si
ze
:1

00
×

10
0

×
10

0
M
ul
til
in
ea
r
ra
nk

:[5
,
5,
5]

SN
R
(d
B
)

N
C
PD

-M
U

H
A
L
S

A
PG

B
C
D

C
D
T
F

Sa
C
D

N
T
D
-M

U
H
A
L
S

A
PG

B
C
D

N
L
R
T

30
6.
6

0.
5

5.
0

2.
2

1.
1

6.
1

12
.2

12
.7

16
.6

5.
4

0.
5

40
6.
4

0.
5

5.
0

13
.0

14
.7

6.
3

12
.1

12
.8

16
.7

5.
4

0.
4

50
6.
6

0.
5

9.
2

13
.0

15
.3

6.
8

12
.2

12
.9

16
.6

5.
5

0.
3

Te
ns
or

si
ze
:5

0
×

50
×

50
×

50
M
ul
til
in
ea
r
ra
nk

:[3
,
3,
3,
3]

SN
R
(d
B
)

N
C
PD

-M
U

H
A
L
S

A
PG

B
C
D

C
D
T
F

Sa
C
D

N
T
D
-M

U
H
A
L
S

A
PG

B
C
D

N
L
R
T

30
61

.5
40

.3
10

8.
2

11
2.
0

13
9.
7

36
.2

16
.2

16
.0

23
.1

33
.7

11
.9

40
60

.2
39

.0
10

6.
9

11
2.
3

13
7.
6

35
.8

16
.3

15
.9

23
.1

41
.1

8.
3

50
60

.2
47

.9
10

6.
3

10
3.
0

14
7.
0

36
.2

16
.0

16
.1

22
.7

40
.9

5.
8

Te
ns
or

si
ze
:3

0
×

30
×

30
×

30
×

30
M
ul
til
in
ea
r
ra
nk

:[2
,
2,

2,
2,

2]
SN

R
(d
B
)

N
C
PD

-M
U

H
A
L
S

A
PG

B
C
D

C
D
T
F

Sa
C
D

N
T
D
-M

U
H
A
L
S

A
PG

B
C
D

N
L
R
T

30
24

9.
4

15
9.
7

21
5.
4

21
8.
7

19
5.
3

12
7.
2

11
5.
0

11
9.
6

12
0.
4

10
2.
6

10
6.
2

40
21

9.
5

19
2.
7

15
0.
7

21
5.
3

22
4.
4

13
0.
4

11
2.
6

11
7.
3

11
8.
9

12
3.
3

78
.6

50
23

3.
4

18
4.
1

12
7.
9

24
3.
4

32
4.
2

12
9.
3

11
4.
9

11
9.
5

12
1.
1

13
1.
0

56
.1

123



Nonnegative low rank tensor approximations 157

(a)

(b)

Fig. 1 Relative approximation errors on the randomly generated tensors in Case 2 with respect to the
different rank settings

largely constrain s the model’s representation ability; however, we can still see that the
potential of the NCPDmethods are promising. For example, for the videos “news” and
“bridge-far”, the NCPD methods are even occasionally superior to the NTD methods.
Thus, the comparison with the NCPD methods provides some insights. From Figs. 2
and 3, it can be seen that the approximation errors of the results by our method are the
lowest. Fig. 4 shows the relative approximation errors on the noisy video “coastguard”
with respect to r . Similarly, our method achieves the lowest approximation errors on
the video “coastguard”with respect to different rank settings and different noise levels.
In Table 4, we list the average running time of each method.

4.4 Hyperspectral data

In this subsection, we test the different methods on hyperspectral data. We consider
four hyperspectral images (HSIs): a subimage of the Pavia City Center5 data set of size

5 Data available at http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.
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”draugtsaoc“(b)”namerof“(a)

”llabteksab“(d)”swen“(c)

Fig. 2 Relative approximation errors on 4 videos (100 frames) with respect to the different rank settings

Fig. 3 Relative approximation errors on the video “bridge-far” (2000 frames) with respect to the different
rank settings
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Bd03=RNS(b)Bd02=RNS(a)

Bd05=RNS(d)Bd04=RNS(c)

Fig. 4 Relative approximation errors on the noisy video “coastguard” with respect to different rank settings
and different noise levels

200× 200× 80 (height×width×spectrum), a subimage of the Washington DC Mall6

data set of size 200 × 200 × 160, the RemoteImage7 of size 200 × 200 × 89, and a
subimage of theCurprite8 data set of size 150×150×150.Meanwhile, a hyperspectral
video (HSV)9 of size 120 × 188 × 33 × 31 (height×width×spectrum×time) is also
selected to test the effectiveness of the different methods on a fourth-order tensor.

Figs. 5 and 6 report the relative approximation errors with respect to different values
of rank r , i.e., multilinear rank = (r , r , r ) or (r , r , r , r ) andCP rank = r . It is evident that
the relative approximation errors by our NLRT are the lowest among all the methods.
It is interesting to note that the difference between our method and NTD-BCD (the
second best method in our comparison) is more significant than that on the synthetic
fourth-order tensor data.

In Fig. 7, we display the pseudocolor images of the results for the Washington
DC Mall data set with a multilinear rank (100,100,100) and a CP rank 100. The
pseudocolor image is composed of the 113-th, 2-nd, and 16-th bands as the red, green

6 Data available at https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html.
7 Data available at https://www.cs.rochester.edu/~jliu/code/TensorCompletion.zip.
8 Data available at https://aviris.jpl.nasa.gov/data/free_data.html.
9 Data available at http://openremotesensing.net/knowledgebase/hyperspectral-video/.
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(a) Pavia City Center (b) Washington DC Mall

etirpruC(d)egamIetomeR(c)

Fig. 5 Relative approximation errors on 4 HSIs with respect to the different rank settings

Fig. 6 Relative approximation errors on the HSV with respect to the different rank settings
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PSNR: 28.32 SSIM: 0.81 PSNR: 29.12 SSIM: 0.84 PSNR: 29.15 SSIM: 0.84

PSNR: 29.10 SSIM: 0.84 PSNR: 29.11 SSIM: 0.84 PSNR: 23.78 SSIM: 0.65

PSNR: 29.69 SSIM: 0.85 PSNR: 28.65 SSIM: 0.82 PSNR: 29.56 SSIM: 0.84

PSNR: 29.78 SSIM: 0.85 PSNR: 34.56 SSIM: 0.94

(a)NCPD-MU (b)NCPD-HALS (c) NCPD-APG

(d)NCPD-BCD (e) NCPD-CDTF (f) NCPD-SaCD

(g) NTD-MU (h)NTD-HALS (i) NTD-APG

(j)NTD-BCD (k)NLRT (l) Original

PSNR: 28.32 SSIM:0.81

Fig. 7 Pseudocolor images composed of the 113-th, 2-nd, and 16-th bands of the nonnegative low-rank
approximations by the different methods when setting the rank 100 on the Washington DC Mall
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and blue channels, respectively. We also compute two image quality assessments
(IQAs): the peak signal-to-noise ratio (PSNR)10 and the structural similarity index
(SSIM) [27] of all the spectral bands for each band. Higher values of these two indices
indicate a better reconstruction quality. In Fig. 7, we report the mean values across the
spectral bands of these two IQAs. It can be found in Fig. 7 that both the visual and
quality assessments of the NCPD methods are comparable to the NTD methods. The
proposed NLRT method largely outperforms the other methods in terms of two IQAs,
achieving first place.

4.5 Selection of features

One advantage of the proposed NLRT method is that it can provide a significant
index based on the singular values of the unfolding matrices [25] that can be used to
identify important singular basis vectors in the approximation. Those singular values
and singular vectors are natural concomitants brought out by our algorithm without
additional computations of the SVD.

Here, we take the HSI Washington DC Mall as an example. We compute the low-
rank approximations of the proposed NLRT method and the other methods in our
comparison with multilinear rank (r , r , r) and CP rank r for r = 20, 40, 60, 80, 160.
For the approximation results by NCPD methods, we normalize the base vectors in
(20) such that the �2 norms of ak,1, ak,2 and ak,3 are equal to 1, and rearrange the
resulting values λ′

z in descending order in the CP decomposition. In Fig. 8, we plot

‖A − XNCPD( j)‖F/‖A‖F

with respect to j , where XNCPD( j) = ∑ j
k=1 λ′

kak,1 ⊗ ak,2 ⊗ ak,3. Similarly, for the
results of the NTD methods, we also plot

‖A − XNTD( j)‖F/‖A‖F

with respect to j , where XNTD( j) = [G×1 U(1) ×2 U(2)]:,:,k j ×3 U(3)
:,k j

, [G×1 U(1) ×2

U(2)]:,:,k j is the k j -th mode-12 (spatial) slice of [G×1 U(1) ×2 U(2)], and each [G×1

U(1) ×2 U(2)]:,:,k j is normalized with its Frobenius norm equal to 1, and k j indicates
a vector composed of the indices corresponding to the j largest �2 norms of U(3)’s
columns. For the results by our methods, we plot

‖A − XNLRT( j)‖F/‖A‖F

with respect to j , where XNLRT( j) = fold
(∑ j

i=1 σi (X3)ui (X3)vTi (X3)
)
, σi (X3) is

the i-th singular value of X3, and X3 is the third-mode unfolding matrix of X. The
third mode of X is chosen in NTD and our NLRT, and we are interested in observing
how many indices are required in the spectral mode of the given hyperspectral data.

10 https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

123

https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio


164 T.-X. Jiang et al.

(a
) 
R 

=
 2

0
 

(b
) 
R 

=
 4

0
 

(c
) 
R 

=
 6

0
 

(d
) 
R 

=
 8

0
 

(e
) 
R 

=
 1

0
0
 

(f
) 
R 

=
 1

6
0
 

Fi
g.
8

T
he

co
m
pa
ri
so
n
of

re
la
tiv

e
re
si
du
al
s
w
ith

re
sp
ec
tt
o
th
e
nu
m
be
r
of

m
od
e-
3
co
m
po
ne
nt
s
to

be
us
ed

in
th
e
te
ns
or

ap
pr
ox
im

at
io
n
w
ith

R
=

20
,
40

,
60

,
80

,
16

0
fo
r
th
e

hy
pe
rs
pe
ct
ra
li
m
ag
e
W
as
hi
ng
to
n
D
C
M
al
l

123



Nonnegative low rank tensor approximations 165

(a) R = 20 (b) R = 40 (c) R = 60 

(d) R = 80 (e) R = 100 (f) R = 160 

(g) R = 20 (h) R = 40 (i) R = 60 

(j) R = 80 (k) R = 100 (l) R = 160 

Fig. 9 The comparison of relative residuals with respect to the number of the first mode (upper two rows
from (a) to (f)) and the second mode (bottom two rows from (g) to (l)) components to be used in the tensor
approximation with R = 20, 40, 60, 80, 160 for the hyperspectral image Washington DC Mall

In Fig. 8, we can see that when the number of components (namely, j) increases,
the relative residual decreases. Our NLRT could provide a significant index based
on singular values to identify important singular basis vectors for the approximation.
Thus, the relative residuals by the proposed NLRT algorithm are significantly smaller
than those of the NTD and NCPD algorithms. Similar phenomena can be found in
Fig. 9, in whichXNTD( j) andXMP-NLRT( j) are computed using the number of indices
in the first or second modes of X .
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(a) The 10-th band of the original HSI. (b) The ground truth categorization map.

Fig. 10 Indian Pines image and the related ground truth categorization information

4.6 Image classification

The advantage of the proposed NLRT method is that the important singular basis
vectors can be identified within the algorithm. Such basis vectors can provide useful
information for image recognitions such as classification. Here, we conduct hyper-
spectral image classification experiments on the Indian Pines11 data set. This data
set was captured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor over the Indian Pines test site in northwestern Indiana in June 1992. After
removing 20 bands, which cover the region of water absorption, this HSI is of size
145 × 145 × 200. The ground truth contains 16 land cover classes, as shown in Fig.
10. Therefore, we set the multilinear rank to (16, 16, 16) and the CP rank to 16 for
all the methods compared. We randomly choose s of the available labeled samples,
which are exhibited in Table 5. Labeled samples from each class are used for training,
and the remaining samples are used for testing.

After obtaining low rank approximations, 16 singular vectors corresponding to the
largest 16 singular values of the unfolding matrix of the tensor approximation along
the spectral mode (the third mode) are employed for classification. We apply the k-
nearest neighbor (k-NN, k = 1, 3, 5) classifiers to identify the testing samples in the
projected trained sample representation. The classification accuracy, which is defined
as the portion of correctly identified entries, with respect to different values of s
is reported in Table 6. The results in Table 6 show that classification based on our
nonnegative low rank approximation is better than those for other methods in our
comparison.

5 Conclusion

In this paper, we proposed a new idea for computing a nonnegative low rank tensor
approximation. We proposed a method called NLRT, which determines a nonnegative

11 Data available at https://engineering.purdue.edu/∼biehl/MultiSpec/hyperspectral.html.
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low rank approximation for the given data bymaking use of low rankmatrixmanifolds
and the nonnegativity property. A convergence analysis is provided. Experiments with
synthetic data sets and multidimensional image data sets are conducted to present
the performance of the proposed NLRT method. They show that the NLRT method
is better than the classical nonnegative tensor factorization methods.
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